miR‐19b controls cardiac fibroblast proliferation and migration

نویسندگان

  • Chongjun Zhong
  • Kun Wang
  • Ying Liu
  • Dongchao Lv
  • Bo Zheng
  • Qiulian Zhou
  • Qi Sun
  • Ping Chen
  • Shengguang Ding
  • Yiming Xu
  • Haitao Huang
چکیده

Cardiac fibrosis is a fundamental constituent of a variety of cardiac dysfunction, making it a leading cause of death worldwide. However, no effective treatment for cardiac fibrosis is available. Therefore, novel therapeutics for cardiac fibrosis are highly needed. Recently, miR-19b has been found to be able to protect hydrogen peroxide (H2 O2 )-induced apoptosis and improve cell survival in H9C2 cardiomyocytes, while down-regulation of miR-19b had opposite effects, indicating that increasing miR-19b may be a new therapeutic strategy for attenuating cellular apoptosis during myocardial ischaemia-reperfusion injury. However, considering the fact that microRNAs might exert a cell-specific role, it is highly interesting to determine the role of miR-19b in cardiac fibroblasts. Here, we found that miR-19b was able to promote cardiac fibroblast proliferation and migration. However, miR-19b mimics and inhibitors did not modulate the expression level of collagen I. Pten was identified as a target gene of miR-19b, which was responsible for the effect of miR-19b in controlling cardiac fibroblast proliferation and migration. Our data suggest that the role of miR-19b is cell specific, and systemic miR-19b targeting in cardiac remodelling might be problematic. Therefore, it is highly needed and also urgent to investigate the role of miR-19b in cardiac remodelling in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The potential inhibitory effects of miR-19b on vulnerable plaque formation via the suppression of STAT3 transcriptional activity

Atherosclerotic plaque growth requires angiogenesis, and acute coronary syndrome (ACS) is usually triggered by the rupture of unstable atherosclerotic plaques. Previous studies have identified typically circulating microRNA (miRNA/miR) profiles in patients with ACS. miRNAs serve important roles in the pathophysiology of atherosclerotic plaque progression. The present study aimed to investigate ...

متن کامل

Effects of miR-19b knockdown on the cardiac differentiation of P19 mouse embryonic carcinoma cells

MicroRNA-19b (miR‑19b) is part of the miR‑17‑92 cluster which is associated with cardiac development. It has previously been reported that the overexpression of miR‑19b increases proliferation, inhibits apoptosis and promotes differentiation of embryonic carcinoma cells (P19 cells). The aim of the current study was to investigate the effects of miR‑19b knockdown on the proliferation, apoptosis,...

متن کامل

MicroRNA-19a and microRNA-19b promote the malignancy of clear cell renal cell carcinoma through targeting the tumor suppressor RhoB

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma, which shows high aggressiveness and lacks biomarkers. RhoB acts as a tumor suppressor that inhibits the progression of ccRCC. In the present study, we examined the effects of oncogenic microRNAs, miR-19a and miR-19b, on RhoB expression in ccRCC cells. The results showed that both miR-19a and miR-19b coul...

متن کامل

Inhibition of microRNA-19b promotes ovarian granulosa cell proliferation by targeting IGF-1 in polycystic ovary syndrome

The purpose of the present study was to investigate the functional role of microRNA (miR)-19b in polycystic ovary syndrome (PCOS) and try to elucidate its underlying mechanisms. Expression of miR‑19b and insulin‑like growth factor 1 (IGF-1) was examined in ovarian cortexes [(from 18 women with PCOS and 10 who did not have PCOS (non‑PCOS)] and KGN cells. Cell proliferation assays (cell viability...

متن کامل

MiR-19b suppresses PTPRG to promote breast tumorigenesis

Protein tyrosine phosphatase receptor type G (PTPRG) is an important tumor suppressor gene in multiple human cancers. In this study, we found that PTPRG protein levels were downregulated in breast cancer tissues while the mRNA levels varied irregularly, implying a post-transcriptional mechanism was involved. Because microRNAs are powerful post-transcriptional regulators of gene expression, we u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2016